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A THEOKE?I’ICALINVESTIGATION OF THE AERODYNAMICS OF

WING-TAJL COMBINATIONS PERFORMING TIME-DEPENDENT

MOTIONS AT SUPERSONIC SPEEDS

By John C. Martin, Margaret S. Diederich,
and Percy J. Bobbitt

A theoretical investigation is presented of the contribution of
horizontal tails to the lift and pitching moment due to amgle of attack,
a constant rate of pitch, and a constant vertical acceleration. Numer-
ical values of the aerodynamic coefficients associated with these motions
We presented for a number of two-dimensional wing-tail conibinations,a
triangular wiqg-tail ccmibination,and a nuniberof rectangular—wing—
triangular-tail conibinations.-

Methods for calculating the flow fields behind wings with constant
vertical acceleration are developed. Calculated results are presented
for the upwash behtad two-dimensional wings and for certain regions
behind triangular and rectangular wings for a constant rate of pitch and
for constant vertical accelerations. A method of treating unsteady aero-
-CS based on an minite series of stabili~ derivatives-of succes-
sively higher order is also presented.

INTRODUCTION,

The development of the linearized theory of supersonic flow has
permitted a first-order evaluation of a number of stabili~ derivatims
for a wide variety of isolated wings. (For example, seerefs. lto 9.)
The linearized theory may also be used in the calculation of’the aero-
dynamic derivatives of the wing-tail combinations. Considerations of
the effects of the horizontal tails located behind wings of necessi~
entail a lmowledge of the upwash induced by the wing. The upwash
from wings performing steady motions can be calculated by use of the
various methods presented in references 10 to 15. A method of calcu-
lating the upwash in the region of the viscous wake behind wings with
a constant vertical acceleration at supersonic speeds is presented in
reference I-6. Except for the methods and results presented in refer-
ences 16 to 19, little consideration has been given to the theoretical
calculation of the contribution of the horizontal tail to the aermiynsmic
derivatives.
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The primary object of
gation of the contribution
due to a constant vertical

the present paper
of the horizontal
acceleration. An

NACA TN 3072

is a theoretical investi-
tail to the pitching moment
investigation of this

pitching moment entails a lmowledge of a number of other factors which
in themselves sre useful in other supersonic flow problems. hasmuch as
a lamwledge of these other factors is reqfired in the primary investi-
gation, the present paper has a number of secondary objectives such as:
(1) the establishment of a method of treating unsteady aerodynamics of
aircrsft by the use of an infinite series of stability derivatives of
successively higher order, (2) the development of theoretical methmls
for the calculations of sidewash and upwash behind wings which have
local angle-of-attack distributims which vary linearly with time,
(3) an investigation of exact and approdmate methods for the calcula- “
tion of sidewash and upwash behind wings with constant vertical accel-
eration, and (4) an investigation of exact and approximate methods for
the calculations of the lift and pitching mament due to a constant angle
of attack and a constant rate of pitch.

The upwashbehd two-dimensional wings with a constant vertical
acceleration is determined and calculated.re~ultssre presented. The
upwash along the center line of the wake behind triangular wings with
subsonic leading edges is determined for a constant rate of pitch and
for a constant vertical acceleration; calculated results are presented
for a number of triangular wings and B&ch nunibers. The upwash in the
wake in the plane of the wing behind rectangular wings is determined for
a constszrtvertical acceleration; calculated results are presented for a
number of rectangdar wings and Mach nunibers.

Exact linearized result’sare presented for the lift and pitching
moment resulting from angle of attack, steady pitching, and a constant
vertical acceleration for a nuniberof two-dimensionalwing-tail combina-
tions, a triangular wing-tail codxhmtion, and a number of rectan@lar-
wing-triangular-tail combinations. Some of these exact results are
compared with results calculated from a nmiber of simple approximate
rehtions which are often used in calculations for subsonic wing-tail
combinations.

SYMBOLS

A aspect ratio

a velocity of sound in free stiesm.

B= @ -1

b wing span

c1

-. . —
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n
.2

.

c

,.

lift coefficient,
&f t-

$ pV%W

%+0

..-
ad
4V2 a+o

horizontal-tail contribution to C
%

horizontal-tail contribution to
w

horizontaLtaiX contribution to C
k

Moment
pitching-moment coeffici&t,

+ p$~~
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&+o

ah

..-2
ac
4V2 ti+o

horizontal-tail contribution to
k

horizontal-tail contribution to C%

%aq horizontal-tail contribution to %

%
Pressure

pressure coefficient,
~ p+

c root chord

E mean aerodynamic chord

d arbitrary distance along x-axis associated with a shift in
center-of-gravity location (see table I)

do distance from apex of a triangular wing to axis of pitch

ds differential area
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‘L

.

E

f

J’
G

h

complete elliptic

~’j~”

complete elliptic

force

integral of second kind with modulus k,

integral of second kind with modulus k’

~ times force associated with first term of equation (1)
a

~~ times force associated with second term of equation (1)—
ac

4V2

ac2

—times force associated with third term of equation (1)
..-

2vtimes force associated with first term of equation (2)—
qc

4$
~times force associated with second term of equation (2)

qc

~3
~times force associated with third term of equation (2)
qc

arbitrag function associated with local angle-of-attack dis-
tribution on awing (see eq. (lba))

finite part of an integral

function associated with Mach surface formed by envelope of
after Mach cones springing from trailing edge of wing

arbitr~ function associated with local singleof attack of
an airfoil (see eq. (Dl))

limits of integration (see eq. (21))

function associated with equation of trailing edge of wing
(seeeq. (20))

——_— ~ .— __—— — —————. --—- --———- --—-
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K

‘q =

K’

k

‘1 =

%2=

k3 =

%=

k! =

2

M

%

i

-a
%

<

complete elliptic integral of first kind with mdulus k,
1

J
d(o 1. A2;1 - IF%)

q
— —

1- B“%z

elliptic integral.

of integration

1/-2B?#
E’(Bm) +

B?n2
.- K ‘(Bin)

1- B%n2

complete

A

of first kind with mahlus k’

variable

BIIcq

x- X1

x - xl

Eanxl

x-c

Bmc

Ihc
x-c

JL-k2
distance from center of gravity to centroid of area of tail

TT
free-stream Wch nuniber, ~

surface formed by envelope of after hkch cones springing from
traihg edge of wing

moment

~times moment associated with first termof equation (1)

~~times moment associated with second term of equation (1)—
ac!

J’

.

3

1.
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L

,“

v

*

4V2
~

thes moment associated with third term of equation (1)

~ times moment associated with first term of equation (2)
qc

4+
— times moment associated with

&2

&3
—times mament associated with
..-3qc

second term of equation (2)

third term of equation (2)

tangent of semivertex angle of triangular wing

cotangent of trailing-edge sweep engle of wing

local static pressure minus free-stream static pressure

rate of pitch

R= X2 - B2(Y2 + 22)

s area of airfoil surface

t time

to arbitr~ instant of time

a82
A% discontinui~ in — which is induced within plan-form

ax
boundaries by discontinui~ in e2 across region of wake

v free-stream veloci~

w veloci~ of vertical translation

-.—. -— —. —.— .—
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x=x - xl

NACA TN 30’72

Y=y-yl

x, y, z rectangular coordinates

XIY Y1 auxilisry rectangular coordinates

z distance from leading edge of wing to center of gravi~ meas-
ured in streamwise direction

z distance between plane of wing and plane of tail

a angle of attack, angle between body axes and free-stream
direction at the center of gravib (see fig. 25(b))

;=& ; the motion of center of gravim associated with this term corre-
spends to a constant-verti-calacceleration and is sometimes
referred to as a plunging motion

spanwise circulation for an airfoil which hss a spanwise
circulation equal to Q(x,y) at wing trailing edge

component of potential function resulting from constant
vertical acceleration

components of e

potential function due to constant rate of pitch

potential function due to constant rate of pitch about the

B2Vto
sXisx=—

#

a eqaverage value of — —
az q%

at horizontal-tail location

variable of integration

variable of integration
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P mass densi~ of air

a local angle-of-attack distribution

;=+

at

u,, Crg components of effective angle of attack on a tail which are
associated with constant vertical acceleration

average value of Is2 at horizontal-tail location

potential function

potential function associated with

potential function associated with

potential function associated with

potential function associated with

potential function associated with

potential function associated with

first term of equation (1)

second term of equation (1)

third term of equation (1)

first term of equation (2)

second term of equation (2)

third term of equation (2)

components of potential function resulting from constant
vertical acceleration (see eq. (9))

par% of function Cl associated with induced effect on wing

part of function $2 associated with wake

potential function associated with constant angle of attack

n b % at horizontal-tail location——
~z aV

average value of
az aV

Subscripts:

LE leading edge of airfoil

t tail

——. ..——- — —.—— .—. -—.
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TE trailing edge of airfoil

w wing

‘re’sims ‘“’h as %lt ‘d %1~ refer to the stabili~

derivatives of a tail surface considered as an isolated wing. Such

NACA m 3072

expressions as Q(O+) mean that tie value of Q
a~roaching zero from a positive direction.

STMEMENT “OFTHE PROBLEM

This paper contains an investigation of the

is obtaln=d by

contribution of the
horizontal tail to the lift and pitching moment produced by a constant
angle of attack, a constant rate of pitch, and a constant vertical
acceleration. Wfortunately, the need for finding the force and moment
associated with a constant vertical acceleration is not always recognized.
~ order to clarify the reasons for investigating this force and moment,
an approach to the more general problem of calculating the effect of
unsteady motions on the forces and moments on an aircraft undergoing a
certain type of longitudinal motion is presented. ,,

Throughout the text the vertical velocity produced behind wings with
a constant vertical acceleration at an angle of attack or in a pitching
motion will be referred to as upwash. Negative upwash is, of course,
comnonly referred to as downwash.

Consider the problem of finding the force and moment acting on the
wing and horizontal tail of an aircraft undergoing longitudinal motions
in which the forwad veloci~ is constant. The force and moment are
determined not only by the instantaneous velocities but also by their
past values. The approach to the problem of calculating the effect of
unsteady longitudinal motions presented in this paper takes into account
the time history of the velocities as well as their instantaneous values.

For many stability studies, the aircraft canbe considered a rigid
body and if the changes in the forward velocity are neglected, its longi-
tudinal motion can be broken down-into two components: (1) the vertical
trsmsldion of the center of .gravi@ and (2) the rotation of the center
of gravi~.

The velocity of the vertical translation w and the veloci~ of
rotation q of the center of gravity may be expressed as a power series
in time about sane arbitrary instant of time to. These two power series
are v

w
I

(t - %)2~*t- =a(t) = a -k-t. +(t - to)~ *t. + p,v 1- +... (u *. 0
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and

Iq(t) = q *t + (t - to)~
o

+ (t - t&•*
t+ ~

I

-1-. . . (2)
2! -tit.

If it is assumed that the forces and moments can be calculated with
sufficient accuracy by the linearized theory of supersonic flow, the
following partial differential equation must be satisfied in the flow
field:

(3)

Since the preceding differential equation is 13near, the flow associated
with each term of equations (1) and (2) can be considered separately,
and the totsl force and moment may tien be fowd by summing the results
fran the individual terms.

The boundary conditions associated with each of-the first three
terms of equations (1) and (2) we: The potential function associated
with each term is zero upstream of the wing disturbance. On the wing and
tail surfaces, the flow must be tangent to the surfaces; thus,

afi~
—=
az

av(t - to)

%$—=-~ (t -to)2
az .

agi~
— = -qx
az

aff

‘%7
= -~x(t - to)

afi~
—=-g (t - to)2
az .

.—-— _— __ .— —~ .— - ----
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In the region of the wake of the wing upstream of any disturbance from
the tail surface, the pressure must be zero; thus, in the region of the
wake

Solutions of equation (3) which satis~ the boundary conditions set
forth in the preceding paragraph allow the calculation of the force and
moment associated with each term of equations (1) and (2). The total
force and moment can be written as

F=u

q

+. ..+

ii= a et % ()%+a&to:qt)+&l&to;2 +. ..+
o

( )% 2-q 3E -q
q t=to w ()

z
()t=tow w)+k to: a(t)+”””

“

.
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The F and M expressims in the preceding
of time and are not zero when t = to. The force

can be written

CL =
Ia t=to

Iqt=to

13

equations are functions
and moment at t = to

in coefficient form as

:cm=++ %+ qt=t.+% ‘ ‘\&tJ&y%-i’. . .+

‘1% 3% ‘ b’w% ‘ W-%(WW+“ “ “

(4)

(5)

The coefficients Cv %’ %’ % c%’ ‘d % ‘e ‘he ‘ti-

atabi~’ty derivative. The remaini@ quanti~ies can b: considered as
stabi~ty derivatives which take into account the unsteady-flow effects
other than the & effectm

me series given By equatio~ (4) ~d (5) me ZMSumed to c~~rge;
hwever, in subsonic fhW mere ia some evidence that the series may not
converge for two-dimensionti airfoils. la mpersofic flow, the force
and moment (calculated on the basis of linearized flow theory) depend
only on the flow field between tie leading edge of the wing and the
trailing edge of the tail. Since only a small portion of the flow field
is involved for supersonic flows, it is expected that these series wi13
converge.

In the present paper. it is assumed that the force and moment can

(6)

—..———- -- .-—.__. .. .. . . -.
-.. —------ ---
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.

(7) “

me problem to be considered is the evaluation of the contribution of the
horizontal tail to the derivatives contained in equations (6) and (7).

CALCULATION OF FLOW FIELDS OF AIFU?OIISHAVXNG

ANGLE-OF-ATTACK VARIATIONS WITH TIME

Basic ~eory

LINEAR

In the preceding section the aerodynamic lifting force and pitching
moment were expressed as an infinite series of stability derivatives.
The first stabi13@ derivatives of the series which are associated with
unsteady flows were shown to be associated with the lift and moment
resulting from a constant vertical acceleration. ~ this section methods P
are presented for the calculation of the flow fields prcduced by wings
with a constant vertical acceleration and the potential function on the
surface of tails which are located behind these wings.

b order to calculate the flow field produced by a wing which has a
constant vertical acceleration and the potential function on a horizontal
tail behind the wing, the solution of two unsteady-flow problems will be
utilized. The first problem is the calculation of the upwash induced
by the wing at a constant vertical acceleration, and the second is the
calculation of the pressure on an airfoil which has a local angle-of-
attack distributionwhich varies linearly with time. These two problems
are special cases of the more general problem of calculating the flow
inducedby an airfoil which has an arbitrsry angle-of-dtack distribution
which varies linearly with time. This general problem is formulated and
the solutions to the other problems’aretaken from it. The effects of
the rolling up of the wake and other distortions are neglected and the
wake is assmedto remain in the plane of the wing.

The linearized partial differential eqyation (eq. (3)) for unsteady
supersonic flow is

.
where the x-axis Hes along the free-stresm direction. The potential for
a zero-thickness lifting airfoil is antisymmetricwith respect to the
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plane of the wing (z = O plsme). It is therefore necessary only to
determine the potential above the plane for z = O. This potential can
be determined by specifying the boundary conditions in the plane of the
wing and the potential upstream of the airfoil disturbance. The boundary
and initial conditions for the potential for the region above an airfoil
which has a local angle of attack varying linearly with time may be given
as

$=0 (8a)

upstream of the wing disturbance,

J%=-3vf(x,y)(t - to) (8b)

on the plan form, and

P= -p(v@x+ %) = o (&)

for z = O (the plane of the wing) off the plan form. The condition
given by equation (8c) is necessary to insure that there is no pres-
sure discontinuity across the wake.

l?romthe preceding boundary condition, it follows that

WJ%YYW) + !$JX,Y,W) =

off the plan form. The general integral of this
equation is any arbitrary function of y amd x

o

partial differential
- Vt. The potential

is assumed to be continuous in the stre& direction, and the potential
has been taken to be zero upstream of the wing disturbance; thus, the
function must be zero for points not on the plan form or in the region
of the wake. ‘I!heboundary conditions can now be written as .

#(% Y,%t) =0

upstream of the wing disturbance,

p(x,Y,o,t) =0

for z = O for points not on the plan form nor in the region of the
wake,

@z(x,Y,o,t) = -avf’(x,Y)(t -to)

for z = O for points on the plan form, and

—— — - ——— . .— .-— .—. ..—— .——.——.
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for z = O for

A solution
the form

This assumption

v@x+#t=o

points in the region of the wake.

of equation (3) can be found by assuming a function of

9= e(%Y,z) +@(x,Y,z) +tfXx,Y,z) (9)

appears reasonable since the boundary conditions are. .
line= functions of time and equation (3) has the same form if x
and t are interchanged.

Substituting equation (9) into equation (3) and equating powers
of t yields

B2~-~-$lzz=0

1% * is set equal to
v

-— Q, equation
B2a2

-x-$zz +$&=

(lOb) reduces to

B2e= -~-ezz- ~(B2k-~-nzz)=o

Substituting eqmtion (10a) into equation (l-l)yields

B2e= - en - 022 = o

Thus, under the assumption that

+=-LQ
B%2

equation (9) may be written as

(ma)

o (lob)

(IL)

(12)

( -%Jo(x’y”)@=e(x,y,d + t (13)
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where 0 and O are solutions of the partial differential equation for
steady supersonic flow. Note that Q does not have the dimensions of
a potential of steady flow. Equation (13) was found by Clifford S.
Gardner of New York Universi~ in an unpublished analysis using another
approach and was used by Ribner in reference 16.

The boundary conditions require that

$. = ‘+%) f-lz= -bvf(x,y)(t - to)

on the plan form or, if the powers of t are equated,

Oz = -tivf(x,y)

and

e= --b2z = dvtof(x,y)
B2a

Substituting equation (lka) into equation (lkb) yields

(lka)

(lkb)

(14C)

The boundary conditions also require that

(30= (lsa)

Sl=o (l’j’b)

for all points either upstream of the wing disturbance or in the plane
= O which are not on the plan form or in the region of the wake and

:hat

() XM?vex+ vt-— -—=
B2 % :2 0

(16)

—.— .——..——— —— —.— — .-—-. ..- .—— -—
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for points in the region of the wake. When the powers of t are
.

equated, equation (16) yields

~=o

vex-~=o
B2

Equations (lka), (1>), and (l’j’a)are
a potential Q for an airfoil which has a
to b f(x,y) in steady flow. Thus, since

.

(17a)

(In)

the boundary conditions for
local angle of attack equal
Q satisfies the linearized

partial differential equation for steady flow, it can be determined by
the methods commonly used for obtaining steady-state solutions in super-
sonic flow.

Similarly, equations (14c) and (1’3a)are the boundary conditions
for the potential e for an airfoil which has a local angle of attack

equal to
-k” - 3; ‘$’y)”

Also, because e satisfies the line-

arized partial differential equation for steady flow, in the region
unaffected by the wake it can be found by the methds used in steady-
flow calculations. However, inasmuch as the boundary condition of equa-

.

tion (17b) replaces the cc@ition that in the region of the wake Ox = O,

which is implied in these methods, another approach must be used to
obtain solutions in the region affected by the wake.

A convenient approach is to divide 9 into two parts: (3= el + 92

where 91 is the steady-flow solution for the given airfoil in the

bel
ordinary sense, that is, subject to the condition that

F
=0 in the

region of the wake. It follows that e2 must satisfy the following

boundary conditions:

e2(x,y,z)

upstream of the wake influence,

be2(x,y,z)

az

= o (l(k)

= o (Mb)

on the wing plan form,
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for points not on

for points in the

The solution

ep(x,y,o) = o (l&)

the wing plan form nor in the region of the wake, and

ae2(x,y,0)

ax
= ~ fl(x,y,o)
B2V

(la)

region of the wake.

for e2(x,y,z) can be obtained in several ways. ~o

be2
approaches are presented here. Both methods require that — be known

ax
af32

in the plsme of the airf’oil. The discontinui~ in ~ is zero every-

where except in the region of the viscous wake, and except (for the case
of wings with subsonic trailing edges) in the region of the wing affected

&32
by the wake, where a discontinuity in

r
is induced by virtue of the

conditions expressed in equations (18b), (1-8c),and (l&i). The value of
a02

‘hedisconth’yyin x-
for points in the region of the viscous wake

can be determined from equation (l&l). ~ many cases, the discontinuim
&32

‘n K
induced on the plan form cm be found by using the method devel-

oped in reference (20) for the pressure cancellation for subsonic trailing
edges.

The first of the methods to be presented
a02

discontinuity in
z

in the z = O plane.

deals directly with the
~ A&3p

— is assumed to
ax

be

known in the plane of the wing, then e2 is givenby (fromeq. (6),

ref. 15)

J

M(X1)Y1,O)X
ep(x,y,z) = — dxl @l +

a;zv wake”-

1
J

zAurx

z d-xlml
Wing(y2+ Z2)R

(19)

—–—.— .——.



20 NACA TN 3072

aez .
where ~

‘s ‘he ‘iscmttiuiw ‘f X-
across the z = O plane induced

within the plan-form boundaries by the discontinuity of e2 across the .
wake and where Ml is the known discontinui~ in Q across the plane
z = o. Note that for wings with supersonic trailing edges Aur is zero.

Since Q is the potential for an airfoil in steady flow, and since
the potential discontinuim in the region of the wake for an airfoil in
steaiy flow
constant in
of y only

If the

is constant in-the x-direction, it follows that &l is
the x-direction. b other words, M(x,y,o) is a function
and maybe written as M(y).

equation of the trailing edge is given by

xl = J(yl)

equation (19) can be written as

f

h2
z

%(%Y,Z)’ —
2zB2V hl

(20)

(21)

The limits on the outer inte~al M the first term of the right-hand
side of equation (21) are taken across the span of the wing or to the
limits of the forward Mach cone from the point (x,y,z). The first term
on the right-hand side of equation (21) can be integrated with respect
to xl. The result of this operation is

z ( )-B2#+z2dyl+e2(x,y,z)= ~B2v

(22)
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The second method of calculating e2 is similar to the approach

aez
used by Ribner in reference 16. By this method an expression for ~

is given and e2 is then found by integration.

i3e2(x,y,2)
The boundary conditions for for wings with supersonic

ax
trailing edges are

be2(xjy,z) o

ax =

upstream of the wake influence,

&32(x,y,o) = o
.
dx

for points not in the region of the

be2(x,y,o) =

ax

Wake , and

1
— n(x,y,o)
B2V

.

for points in the region of the wake. !lheseboundary conditions are
the same as the boundary conditions for the potential of a lifting line
located at the trailing edge of the airfoil. The strength of this

lifting line is
1— r where r is the spanwise circulation for an

B%
airfoil which has a spanwise circulation equal to the value of Q(x,y,z)
at the wing trailing edge. Thus,

ae2(x,y,z)

ax
= -& ~(x,y,z)

where ~(x,yyz) is the part of Q(x,y,z) which results from the dis-

continui~ of Q(x,y,z) through the region of the wake. The function
~(x,yj z) is also the potential resulting from a lifting line which has

a circulation of the amount I’ and is
follows that

Jlx
e2(x,y,2) = —

B2V ~

located at the

~(~,y,Z) dA

trailing edge. It

(23)

—.—. . .-— —..— -——- _ -—— -—— —.—-
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where the lower

(The expression
by the envelope

limit is taken from the trailing-edge Mach

“trailing-edge&ch surface” refers to the
of the after I&ch

The solution for Q2(xjy,z)

sonic trailing edges must include
the plan-form area because of the

cones springing from the

NACA TN 3072

e
surface MS*
surface formed
trailing edge.) .

associated with wings which have sub-

the effect of the potential induced on
condition that

ae2(x,y,o) o

“az =

on the wing plan form. Thus, if Qp denotes the effect of this induced
potential for wings with

ez(x,y,z) =

subsonic trailing edges,

1
J[ 1xf$Jx,y,z)+~(h,y,z)dlw% (24)

Two methods of finding the function ez(x,y,z) have been presented,

the expressions for (32 being givenby equation (22) and equation (24).

The function 62(x,y,z) can

of which will be utilized in
this section.

lh appendix A, equation
equations are obtained:

also be obtained by other approaches, one

an example which is presented at the end of

(~) is differentiated and the following

a92(x,y,z) z

&
=—
2JCB2V

Za J
x+

——
2dy wtig(y2+ Z2)R

- J)2 -B2(y2+ 22) ‘L

dxl Wl (25)

.,
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aQ%Y,4

az

1 J% M(yJ
=—

222JCB2V hl (y2+ Z )
Y2~(x - J)2 - B2(Y2 + Z2) -

-1

‘2(X-J)2]dy,+52ging(;:,y.
1(x - J)2 - B2(Y2 + 22)

(26)

The differentiation of the double integrals of A% was indicated only

in the preceding equations, the reason being that the expressions
resulting from the differentiation under the integral sign appear to be
of little value in numerical calculations. For wings with supersonic
trailing edges, A% is zero. Thus, the double integrals vanish. For

most problems where the wing has subsonic trailing edges, the sidewash
and upwash contributedby the double integals in the usual tail loca-
tion couldbe approximatedby the sidewash and upwash from a lifting
line in the vicinity of the trailing edge. This lifting line should

have a strength equal to + (A$$2)~ where (42) ~ iS tie potential
B2V

induced at the trailing edge by the discontinuity in Q2 in the region

of the wake.

a02 ad
h appendix A the following expressions are developed for —

ay
a82
— for wings with supersonic trailing edges:
az

af32(x,y,z) ~ xJ a~(~,y, z) dl

by ‘— - --&Q-J%) y (27)
B2v G(Y,Z) &

a02(x,y,z) ~ xJ WT(LY,Z) aG(y,z)
dl - & %(%) az

az ‘—
(28)

B2v G(Y,z) az

.——— ... —. ——. _ —-= — ——.—
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where x and%
by az

are the sidewash and upwash from a lifting line

with a strength equal to I’ and located at the trailing edge of the
wing. For subsonic trailing edges,

and

where ~ and ~ are the
ay az

potential induced on the plan
the wake.

sidewash and upwash resulting from the

formby the discontinuity of Q through

The total potential (from eq. (13)) in the region affectedly the
wake is, therefore,

@(x,y,z,t) = el(X,Y,Z) + e2(x,y,2)

The sidewash and the upwash are therefore

and

The upwash
acceleration is

() XM
+: t-—

fl(x,y,z)

B2a 3

given by

(31)

(32)

on the plan form of a wing undergoing constant vertical
giVeIl by

.

.
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@z = at - to) (z = o)

for axes attached to the wing. Therefore, for this motion,

f(x,y) = 1

and

>=;

The potential el(x,Y,z) is the steady-flow potential for an airfoil

which has an angle-of-attack distribution equal to
-Xvto-$)f(x,y)

‘r -*@o -$? ‘for which ~= 0 ‘*w*e” ‘ticeating
having a constant rate of pitch about an axis located

q(x - Xo)
angle-of-attac kdistributionequalto ~ ,

el(x,yjz) = M?”Q e!
qB2 q

atx=xo has an

where ‘4 is the steady-state

B2Vto
axis located at x = —.

M2

ptential due to a wing pitching about an

The potential
$l(x,y,z)

is the steady-flow potential resulting from
:

a wing having an angle of attack equal to f(x,y) or in this case unity.
H ~ ip the potential due to awing hating a constant angle of attack a,

Q(x,y,z) = :%

The function 02 is given by equation (22) or equation (24).

—....— -- —— —.— — —- — — —— —.— ———. . —
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Therefore, the sidewash @ wash me @ven by

.

.

$. hf?aeq_—— — +
‘-#aZqC&c

(34)

(35)

where Elq is the potential for the wing pitching about the sxis x = O.

Equation (35) is used to calculate the upwash from a number of wings.

For wings with
behind the trailing

@wash at the Trailing Fdge

supersonic trailing edges, the upwash immediately
edge is given by

.

L 2

The first two terms of this expression may be evaluated by the method
of calculating the steady-flow upwash immediately behind the trailing

a02
edge (refs. 10, IJ-jand 15). me te~

()Km
is (from appendix A)

o
the expression -* %(%) ‘:’2) evaluated in the plane for z = O

at the trai13ng edge of the wing.

Approximate Values of fly and fiz

An approximation to the sidewash and upwash can be obtained by
neglecting the terms which become constant for large values of x in
equations (34) and (35). ‘l%isappro-tion leads to the following
expressions:

— —— .—
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.

(37a)

(3n)

Equations (37) may also be obtained by assming that the lift on the wing
builds up instantaneouslyand that the upwash at a relatively large dis-
tance behind the wing is determinedly steady-flow values of the lift
distribution on the wing. It is not assumed, however, that the upwash
at the tail location at a given instant corresponds to the lift distri-
bution on the wing at the same instant. The assumption is made that
there is a time lag between the lift distribution on the wing and the
upwash induced by this lift distribution at t-hetail location. This time
lag is the time required for a point moving with the free-stream velocity
to travel from the wing location to the tail location. lh the past it
has been found that, by using the stabilim derivative c% calculated

on the preceding assumptions, the airplane motions could generally be
predicted with satisfactory accuracy (ref. 21). This accuracy seems to
indicate that values of upwash from a wing having a constant vertical
acceleration”in subsonic flow, calculated on the basis of the preceding
assumptions, are a good approximation to the exact values.

The question naturally arises as to whether the simple assumptions
of,instamtaheous lift.build-up and time-lag effect give a good approxi-
mation to the upwash frcm a wing which has a constant vertical accel-
eration at supersonic speeds. This question is investi~ted for a number
of cases.

The values given by equations (37) are dependent upon the position
of the origin of the x-axis. Since equations (37) represent a time-lag
effect in the flow field, it seems logical that the origin of the x-axis
should be located near the centroidtof the wing area for wings with small
amounts of sweep. For highly swept wings it seems logical to allow the
origin of the x-axis to vary along the span so that the distance x in
equations (37) represents the distance from the point under consideration
to the center of the section of the wing which lies directly upstream of
the point under consideration.

An approximate method of calculating the upwash behind wings with
a constit acceleration which is more accurate than equation (37%) is as
follows: Calculate the angle-of-attack and pitching components approxi-
mately by the use of lifting lines. (See refs. 13 and 15.) me compo-

a02
— can be calculated exactly for wings with supersonic trailing

‘ent az

-.——.-.. .— .——— —. —— ..— —— ——.— —-
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edges and approximately for wings with subsonic trailing edges by neg-
lecting the integral over the wing in equation (26). Klhismethod should
yield results
trailing edge
approximation
components by

which are accurate to a fairly high degree except near the
or the Mach surface which springs from it since the main

.

is the calculation of the angle-of-attack and the pitching
the use of lifting lines.

The ~o-Dimensional Airfoil

One of the simplest time-dependent upwash problems is the two-
dimensional airfoil which has a constant vertical acceleration.

For the region which is not affected by the wake, e2 is zero, and

by inspection

Wq
—= -q(x - Bz)
az

ah is
The component —

az

ltromequation (35), the upwash is given by

g=g:-: (t-to) (38)

aeq ad @?rom the region affected by the wake, — are zero and
az Z-

equation (35) yields

$2 1 ae2~= ——
UC h az

~om equation (28),

&32
—=
az -* %(~) aG:”)

(39)

(40)
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.When the y-axis is lo~ted along the leading edge of the wing (from

29

eq. (A9) of appendix A)~

G(y,z) = C -t13z

Since the potential function on the upper surface of a

(4Q

two-dimensional
avx

airfoil at a constant angle of attack is — where x is measured

from the leading edge, %(%) is given byB

Thus, the upwash in the region affected by
by

L 1—= .—
b B2

Values of & at t to are plotted for=

figure 1.

(42)

the wake is found to be given

(43)

various values of z in

An examination of equation (37%) and figure 1 reveals that the
approximation given by equation (37b) breaks down for the upwash behind
a two-dimensionalairfoil.

The Triangular Wing

The upwash along the center line of the wake is determined for a
triangular wing with subsonic leading edges. Equation (35) indicates
that the upwash induced by a wing with a constant vertical acceleration

is made up of three components. 3%
One of these three components, ——,

az av
is available in the published literature. (See refs. 11 and 12.) ‘lThe
two remaining components are derived in this paper.

The upwash along the center line of the wake of a triangular wing
with a constant angle of attack is given in references 11 and 12. l?rom
either of these references t~e upwash along the center line of the wake
can be written as

.—- ..——— — - . . — —— -.
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a% 2—— =.
az aV J(E‘(Bin)

{

% ) (%]‘(k3) - ~ - k52 K +
—

I
1 K(kl) - E(kl)

o kl+l!m

for c<x~(l?m+l)c, and

K(%) - E(%)

k#(l + I!@m)

r4 K(kl) - @l)
E(%) +

o kl+Bm

% 1(44a)

1dq (4W))

for (Em+ l)cs x. Figure 2 presents the vsriation of a%
z z “-ong

the wake center line of a triangularwing for various values of Bm.
These values were taken from references 11 and 12.

me upwash along the center line of the wake of a triangularwing
with a constant rate of pitch is found in appendix B. l?rcmthe results
of this appendix the upwash along the wake center line can be expressed
as follows:

{

af3q(x,0,0)= _= c ~

J
[ 11klK(kl) - E(kl)

az q F o (Pm+ k1)2
dlq -

(1k3 K(l@ - E(%) k32)K(k3) - @3)x

I
\-

;
1 kJ@ok2 + q2 ‘2 - %

}

(45a)

-.. —
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for c~xs(lin+l)c, and

.

aeq(x,O,0) ({Iq ~B?n2 + l)k~ + W] K(k~)
-q, ;J

E(kl)—=
az

}

ml +
o (Pm+k~)2 ‘W+kl

()
Bm(l- ~2)K(k4)

2 ~ E(k4) +-—
kk

)

(45b)

for (Bin+ l)c s x.
1 a9q along

Figure 3 presents the variation of —
qc r

the center line of the wake for various values of the parameter Bm.

&32
The upwash component — along the wake center line is deter-

az
mined in appendix C. I?Yomthe results of this appendix the upwash com-

&2
— along the center line of the wake is

‘orient az

for cSx<(Bm+l)c, and

- -fiB2Et(m@%) -(1 - k42)@4]
be2= 23.(X- c)

az

(46a)

(46b)

for (Em+ l)c< x.

the wake center line

B2 aep
Figure 4 presents the variation of —— along

~ az
for various values of the parameter Em.

The three components of the time-dependentupwash along the wake
center Mne were added to yield the upwash at t = to. Figure S presents

the results of this addition. The contribution of each component is
shown in figure 6 for a ~ch number of L67 and an aspect ratio of 2.

..———-— _ —-—..— ~ —————-—————- ——
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Note that in this case no component is so small that it may be neglected.
It csm be seen from equation (35) that the upwash at any arbitrary time
can be found from figures 2 and 5.

The results of exact and approximate calculations of the upwash
behind triangikr wings with a constant vertical acceleration are given
in figures 7 and 8. Figure 7 presents values determined by the expres-
sion (eq. (35)) for exact linearized upwash values and values determined
by the approximate relation (eq. (37b)) for various aspect ratios for a
l%achnumber of 1.414. llgure 8 presents exact linearized values of the
upwash and values determined by the approx-te relation (eq. (3W))
for various lhch numbers for an aspect ratio of 2. ‘l?heorigin of the

x-axis used in equation (37b) was located at the ; point. Figures 7

and 8 indicate that equation (37%) yields results which are good approxi-
mations to the upwash along the center line of the wake of a delta wing
with subsonic leading edges.

The Rectangular Wing

The upwash in the z = O plane behind a rectangular wing with a
constant vertical acceleration is determined. From a lnmwledge of the
upwash from the unswept w5ng of infinite span and the upwash from one
tip of a semi-infiniterectangdar wing, the upwash froma rectangular
wing can be found as long as the Mach line from the leading edge of one
tip section does not intersect the opposite tip. This was done for the
wing at a constant angle of attack in reference 10 and for the wing
pitching about its leading edge in reference 15.

The general upwash distribution behind a rectangular wing is not
easily obtained in a convenient mathematical form. By use of equa-
tion (36) the upwash close to the wing trailing edge can, however, be
expressed in a concise mathematical form. The upwash close to the
trailing edge of one tip of a rectanguhm wing is givenby

(47)

where the coordinate axes are located at the leading edge of the tip
section (see fig. 9). The spanwise upwash distribution close behind the
trailing edge of a semi-infinite rectangular wing is obtained by putting
negative values of y into equation (47).

.

.

‘lTheupwash distribution for the rectangular wing is presented in
the form of curves. Unfortunatelyj the results for the time”-dependent
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upwash from a wing with a
can not be trtisformed to

33

certain aspect ratio at a given l@ch number
the results for the upwash from a wing with a

different aspect ratio and at a different Mach &nber as can be–done for
wings in steady flows. ’15eupwash for the motions considered here, how-
ever, has been expressed in terms of steady-flow solutions. ~ese steady-
flow solutions can be transformed from one case to another. Each com-
ponent of the upwash is given separately and then these components are
ccmibinedfor certain cases.

The upwash froma rectangular wing at a constant angle of attack
was given in reference 10. Figure 10 presents the upwash from one tip
of a rectangular wing at a constit angle of attack. In figure 11 the
upwash disaibutions from both tips are combined for various values of
the aspect ratio Mach number parameter AB.

The upwash from a rectangular pitching wing was presente~ in ref-
erence 15. Figure 12 shows the upwash distribution from one tip of a
rectangular wing pitching about its leading edge. in figure 13 the
upwash distributions from both tips are conibinedfor various values of
aspect ratio Mach number parameter AB for the axis of pitch located
at the wing midchord point.

N@
‘e ‘washC-onmtz- was evaluated by using equation (28).

Figure 14 shows the distribution of the upwash component
B2 ~02

G= betid
one tip of a rectangular wing.

The three components of the time-dependent upwash for one tip of a
rectangular wing were added to yield the time-dependent upwash behind
one tip of a rectangular wing at t = to. Figure 15 presents the results

of this @tion for various Mach nunibers. The contribution of each
upwash component is shown in figure 16. ~s figure indicates that no
one of the thee components which make up the upwash at t = to is so

small that it may be neglected in upwash calculations. In figures 17
to 22 the upwash distributions from both tips are conibinedfor various
Mch numbers and aspect ratios. From eqution (35) it can be easily
seen that the upwash at any time can be determined from figures I.1and 17
to 22.

Figure 23 presents exact (linearized) and approximate values of
upwash at t = to for a wing with an aspect ratio of 1 for llachnumbers

of 1.414 and 2.24 for x/c of 3 and 6. Figure 24 presents exact (line-
arized) and approximate values of upwash at t = to for a wing with an

aspect ratio of 3 for Mach nuuibersof 1.414 and 2.24 for x/c of 3 and 6.
These two figures indicate that the approximate values are in fair agree-
ment with the exact values for x/c of 6. As pointed out previously, the

.— —.—— ——. —. ..- — . ——-— ——.— ——-————- ——-
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flow behind a
the effect of

rectangular airfoil may be considered as being made up of
the tips and the effect of a two-dimensional airfoil.

Since the approbation breaks down for the two-dimensional airfoil,
the effect of the tips must be considerably larger than the effect of
the two-dimensional airfoil in order that the approximation be vaUd.
This explains the large discrepancy between the exact and approximate
values shown in figure 24 for the region near the center of the wake.

It should be noted that the upwash distributions shown in fig-
ures D, 13, and 17 to 24 have been plotted from the wing axis of symmetry
out to the wing tip. w figures 10, 12, 14, 15, and 16, showing upwash
distributions from one tip of a rectangular wing, the origin is located
at the wing tip.

AERODYNAMIC COEFFICIENTS

~ order to calculate the contribution of the horizontal tail to
the aerodynamic coefficients a knowledge of the upwash produced by the
wing is required. Exact (linearized) and approximate methcxisfor the
calculation of the upwash induced by a wing which has a constant vertical
acceleration were presented in the preceding sections. It was found that
the exact (Mnearized) upwash induced behind wings with a constant accel-
eration contains the upwash induced behind the same wing at a constant
angle of attack and with a constant rate of pitch. IB this section exact
and approximate methods for the calculation of the aerodynamic coeffi-
cients on the horizontal tail are presented.

The calculation of the tail contribution to the derivatives con-
sidered in this paper can be accomplished by utilizing the concept of
the “effective angk of attack.” The effective angle of attack is
defined in such a way that the local angle-of-attack distribution on the
tail surface is changed in order to take into account the uptash induced
by the wing. ‘Ihetail surface is then considered as an isolated lifting
surface on which the local angle-of-attack distribution is given by the
effective angle of attack. Except for the two-dimensionalwing-tail
combination treated, the exact (linearized)values of the aerodynamic
coefficients to be presented were obtained by numerical Integrations.

The coordinate axes used in determining the aerodynamic coefficients
are illustrated in figure 25(a). ‘I!heorigin is located at the center of
gravity of the aircraft. me effect of changes in the center-of-gravity
locations can be taken into account by the transformationspresented In
table I. ‘Ihestability axes are illustrated in figure 25(b), and the
transformations f%om body axes to stabili~ axes are given in table I.

— . . — . .. . — — ———— —.—. ——.—-—--——



NACA TN3072

The Lift and Moment Due to Angle of

Wing-l%il Combinations

35

Attack for

Equations for tail contribution.- The effective angle of attack used
in calculating the tail contribution to c~ and c% is

( d%u=ul-l— —_
~z aV )

(48)

The lifting pressure associated with equation (48) can be found by
steady-flowmethals.

‘l?henormal-force and moment coefficients resultti frcm the mres-
sure difference through the

ML .

tail surface can

2 St
— —
C&st % J Tail

be expres~ed as -

LYPds (49)

(50)

where x is measured from the sxis about which the moment’is taken.

An approximation of the contribution of the tail to the stability
derivatives c~ and c% can be found by making use of an arithmetic

average of the upwash induced by the wing at the
this is done, ACb and ~ may bee~ressed

tail location. When
as

(51)

(52)

——— ——. — .—. .— .— .— .-— -— ___
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For most cases : Cblt is much greater than >
%

~~lt ~d there- ‘

fore equation (52) can be approximated by

Cdt
(53)

!l?wo~ensional wing-tail combinations.- The C~ and the
%

for the two-&bnensionalwing-tail conibinationcan be expressed in closed
form. The sum of the wing and the tail contributions to these deriva-
tives is as follows: For the case where the tail lies downstream of
the Mach sheet from the trailing edge of the wing (see fig. 26(a)),

and

For the case where the Mach
intersects the tail surface

4

()

Ct
Cb=;l+=

(- 2ctz )21-s+—=-—
B % +2

(54)

(55)

sheet from the trailing edge of the wing
(see fig. 26(b)),

(c~=:l+=+~+ct BZ-—
c~ Cw 2CW Cw)

(56)

For the case where the tail surface lies between the
leading edge of the wing and the Mach sheet from the
the wing (see fig. 26(c)),

a

(57)

Mach sheet from the
trailing edge of
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(58)

and

%= ,(21-25.—

)
(59)

Figure 27 presents a comparison of values of the c% calculated

by the preceding exact e~ressions with the values of the ~ where

the tail contributionwas calculated by the approximate relation given
by equation (53). Equdion (53) is a good approximation to the tail
contribution to the ~ for the case considered in figure 27. The

discontinuities in the cm’ws h fiwe 27 Correspond to points where
the type of flow over the tail surface changes. (See fig. 26.)

A triangular Wirig-tailcombination.- Zhe C& and ~ of a tri-

angular wing-tail conibinationare considered. The wing has an aspect
ratio of 2.31 and the aspect ratio of the tail is twice that of the
wing. The wing and the tsil are located in the sane plane, and the root
chord of the wing is four thes the root chord of the tail. The ?&ch
number is restricted to the range’where the leading edge of the wing
is subsonic and the leadtig edge of the tail is supersonic.

Jh reference 11 calculated values of upwash behind triangular wings
with subsonic leading edges are presented. These values could be used
to calculate the tail contribution to the C~ ~d ~ of the wing-

tail combination which is being considered here. ti order to be con-
sistent with what follows, however, it is assumed that the spanwise
variation of the upwash can be neglected and the upwash is determined
by the values of the upwash along the center line of the wake. (An
examination of the upwash values presented in reference 11 indicates
that spanwise variation of the upwash is small in the region where the
tail is located.)

Figure 28 presents the variation of c~ ~th z/~ for three

Mach numbers for the triangular wing-tail combination under consider-
ation. Figure 29 presents the variation of ~ ~~ l/~ for two

of the Mach ntiers considered in figure 28. Figure 30 presents a com-
parison of the exact (linearized)values of the ~ with the values

of ~ where the tail contribution was calculatedby the approximate

relation givenby equation (~). Figure 30 indicates that equation (53)

——— ..
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is a good approximation to the tail contribution to

being considered in this section.

& forthe cases

Rectangular-wing—triangular -tail combinations.- ‘lhe Cb and &

of a number of rectangular-wing-triangular-tail combinations are con-
sidered. These wing-tail combinations are illustrated in figure 31 where
the defining psmmeters are also presented. !llhecenter of gravity is
located at the midchord point of the wing.

The variation of C% with Z/~ of the rectmgular—wing—

trismgular-tail combination for several Mach numbers is presented in
figure 32 whereas the variation of & is@ventifigure 33. me

decrease in C~ with increasing Z/~ is a result of the increase in

the upwash with increasing z/cw. b certain cases, the effect of the
upwash from the wing on the tail is krge enough to cause the total
C% to become destabilizing (fig. 33).

Figure > presents a comparison of the exact (linearized)values
of ~ with the values of ~ where the tail contributionwas cal-

culate~by the approximate rehtion givenby equation (53). Figure 2
indicates th@ eqyation (53) is a good appro~tion to the tail con-
tribution to ~ forthe cases considered.

tive

The Lift and Moment Due to Steady Pitching

for Wtig-Tail Combinations

General expressions for the aerodynsmic coefficients.- The effec-
angle of attack of a tail surface h pitching motion is

“=$%+w (60)

where the origin of the x-axis is located at the axis of pitch. The
lifting pressure associated with a can be found by steady-flow methcds.

The normal-force and moment coefficients resulting from the lifting
pressure on the tail stiface can be expressed as
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(61)

(62)

where the moment axis is taken about the axis of pitch.

Approximations of the contribution of the tail to the stability

derivatives
Ch

and c
~

can be found by making use of an arithmdic

average of th upwash induced by the wing at the tail location.
When

this is done, the
c% d c%

of the wing-tail combination may be

expressed as

(63)

(64)

where in this case Z is the distance fram the axis of pitch to the

centroid of the tail area. (The axis of pitch and the moment axis for

the stability derivatives of the isolated tail are located at the centioid
of the tail area.)

. ..— ——. .-—— —__ —-_ ——-— —- ——--—.. — __ ..———--. — —
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.

Further approximations to
c% ‘d k

can be obtained by

retaining only the highest powers of Z/~ in the preceding expressions. .

The following approximate relations are thereby obtained:

(65)

(66)

Two-dimensionalwing-tail combinations.- me equations for
c%

and ~ for the two-dimensionalwing-tail combinations can be expressed
.

in closed form. The sum of the wing and the tail contributions to these
derivatives me as follows: For the case where the tail Ues downstream
of the mch sheet from the trailing edge of the wing (see fig. 26(a)),

and

For the case where the l.iachsheet from

(67)

(68)

the trailing edge of the wing
intersects the tail surface (see fig. 26(b)),

1- -1

(69)

and

(70)
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For the case where the tail surface lies between the
the leading edge of the wing and the Mach sheet from
of the wing (see fig. 26(c)),

and
—

41

Mach sheet from
the trailing edge

(n)

(72)

Figure 35 presents a comparison between exact (linearized)values
of the C% calculated from equations (67), (69), and (~) and approxi-

mate values calculated by the use of equation (65). Figure 36 presents
a comparison between exact (linearized)values of the ~ calculated

from equations (68), (70), and (72) and approximate values calculatedly
the use of equation (66). Figures 35 and 36 indicate that the approxi-
mate relations given by equations (65) and (66) yield results which are
in good agreement with the exact (linearized)values for l/~ seater

than 2 for the cases considered. The poor agreement between exact and
a~roximate values of

c%
for the values of z/~ less than l.~

(fig. 35) are a result of neglecting the effect of the upwash induced
by the wing on the tail surface.

A triangular wing-tail combination.- !lhec%=d~ofa

triangular wing-tail cofiination are considered for the same configu-
rations and ~ch nuniberrange which were considered previously in the
section on the lift and pitching mment due to angle of attack.

It is asswd that the spanwise Variation of the upwash due to
pitching can be neglected and that the upwash at the tail locations can
be determined from the tiues of upwash along the center line of the wake.
Under these assumptions the upwash at the tail location due to the wing
pitching about its apex can be determined from figure 3. The upwash at
w Pofit on the cater ~~ of the wake due to the wing pitching about
an axis at an arbitrsry location can be found by the use of fiwes 2
and 3 and the rehtion

1 aeq 1 aeq

~= pitc~ about ‘&r

arbitrary i3XiS

doa~

Pitching -Fzz

about apex

——— —c ._ ..— —-
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where ~ is the distance from the apex of the wing to the location of

the arbitrary axis of pitch.
.

llhevariation of C and
% %

with z/~ for three Mach numbers

is presented in figures 37 and 38, respectively.

A comparison between exact (linearized)values of
c%

and the

approximate values of
c%

calculated from equation (65) is given in

figure 39. The large discrepancy between the exact and approximate
values for the lower I@ch number.is a result of neglecting the upwash
fronthe wing due to pitching and ~ of theting.

Figure 40 presents a comparison between exact (linearized)values
of the C~ and approximate values of the C% calculated from equa-

tion (66). This figure indicates that, for values of z/~ greater

than 2, equation (66) yields a good approximation to
%

for the two

cases considered.

Plots of C% and C% for three different center-of-gravityloca- -

tions at MSCh number 1.44 are presented in figures 41 and 42, respec-
tively; these plots indicate that the center-of-gravity location has a
large effect on

c% ‘d %
for the cases considered.

Figure 43 presents a comparison between exact (linearized)values
of c

%
and values calculated from equation (65) for two different

center-of-gravity locations. !Chepoor agreement between exact and
approximate values shown in figure 43 indicates that equation (65) should
not be used when the center of gravi~ is not located near the centroid
of the wing.

For two different center-of-gravity locations, a comparison between
exact (linearized)values of

%
and values calculated from equation (66)

is made in figure 44. Since the agreement for the lower values of z/~

is yoor, this comparison tidicates that care should be exercised when
equation (66) is used for cases where the center of gravi~ is not located
near the centroid of the wing.

Rectangular-wing—triangular -tail combinations.- ‘l?heC and
% %

of a number of rectanguhr-wing-triangular-tail combinations are con-
sidered. These wing-tail combinations are i~ustrated in figure 31 where
the defining parameters are also presented. ~ese are the same configu-

.

rations that were considered previously in the sections on the lift and
pitching moment due to angle of attack.
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The variation of C
k

with z/~ of the

several 14achnumbers is presented in figure 45

%
with z/~ is presented in figure 46.

43

wing-tail combination for

whereas the variation of

A comparison of the exact (linearized)values of Cb and approxi-

mate values caktited from equation (65) for two wing-ta~l configura-
tions and two llachnunbers is presented in figure 47. There is good
agreement between the exact and the approximate values for the cases
considered.

Goal agreement between the exact (linearized) values of ~ and

the approximate values calculated from equation (66) for the cases con-
.

sidered is indicated in figure 48 which presents these values for two
wing-tail configurations and two Mach numbers.

Figures 49 and 50 present C% and %, respectively, for three

different center-of-gravity locati&s at Mati-number 1.414 for two dif-
ferent wing-tail combinations. ~ese figures indicate that the center-
of-gravity location has a large effect on

c% ‘d % ‘or tie cases
considered.

A comparison between exact (linearized)values of C~ and values

calculated from equation (65) for two different center-of-gravity loca-
tions and two different configurations is presented in figure 51. The
poor agreement between the exact and approximate values shown in fig-
ure 51 indicates that equation (65) should not be used when the c&nter
of gravity is not located near the centroid of the wing.

Figure 52 presents a.comparison between exact (linearized) values
of the ~ and-values calculated from equation (66) for two different

center-of-gravity locations and two different configurations. me poor
a~eement for tk lwer values of z/~ shown in figure 52 indicates

that results &lculated from the approximate e&ation ’(66)are unreliable
for center-of-gravi~ locations that are not near the centroid of the
wing area.

l%e Lift and Moment Resulting From a Constant Vertical

Acceleration for Wing-Tail Ccmibinations

General expressions for aerodynamic coefficients.- The upwash on the
horizontal-tail surface resulting from the coqstaqt vertical acceleration
is given by

@z = -&V(t - to)
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The upwash induced by the wing at the tail location is (from eq. (35))

The effective angle of attack of the tail is given by

me preceding equation indicates that the effective angle of attack of
the tail is made up of two components, one which varies linesrl.ywith
time and one which is of a steady-state nature. It follows that, in
order to determine the potentisl induced by the tail on its surface,
it is necessary
variation given

and one which has

U2

to SOIVS two pro%lems, one-which has an angle-of-attack
by

( askUpa(t-to)l+z=
)

an angle-f-attack

_~$aQq &C——— -—
VB2&qc V

variation given by

(73)

(74)

The potential corresponding to al can he found by the methods given in

the theoretical development conce- upwash and the potential corre-
sponding to U2 can be found by steady-flow methcds.

After the potential is determined, the pressure can be found by
making use of the relation

iW=p(VA~+~)

where @ ‘representsthe potential difference
its surface.

induced by the t&~l through “
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l%e normal force and moment resulting from the pressure difference
through the tail surface csm be expressed by

P= J/j1 APds
Tail surface

and

q..fl Xmds
T’bil surface

The two quantities, F: and ~, can be expressed in coefficient form by

4
‘1 2

g V%& = - pv’2~& J
xAPds

Nil surface

The tail contribution to the stabillty derivatives
c%

and ~. Cm
u

be expressed as

AC% = 4 St;t

J
APds (75)

5pvst5t ~~ ‘Ihilsurface

and

4 s@’

%
. =-

J
xAPds

ci.pvS#t2~&2 Tbil surface
(76)

T@ clifficulties i.n?olvedin calculating the exact values of the
tail”contribution to the stability derivatives

c% ‘d % ‘e ‘n

———.— ——— ——— — — ..— —– -----
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most cases too great for
supersonic leading edges

NACA TN 3072

practical computations. The lift on tails with
and trailing edges which are perpendicular to

the free-stresm direction can, however, be tiea~d by the ~th~ pre-
sented in reference 22. Expressions for the moment on the tail are
developed h appendix D for the case of an angle-of-attack distribution
that increases linearly with time.

An approximation to the contribution of the tail to the stability
derivatives C .~ and ~ can be found (as was done in ref. 16) by

~ue of an arimtic average value of the upwash inducedby the
tig at the lail location. When this is done,

%3 ‘d % ‘y be
expressed by

1

1(1++%’’dm,,+-%lmm

where z is the distance from the center
axis about which C .%1’lbil ‘d % I!l%il

Further approximations to C% and

retaining only the terms which are of the

Tail +

(78)

of gravity to the reference
are tsken.

~ can be obtained by

highest order in Z in equa-
ti~ (m) ti (78). When these terms are retained, the following
appro&& rel&tions are obtained:

(79)

(80)

.

0
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Equations (79) and (80) csa also be obtained by assuming a time-lag
effect in the downwash from the wing. Approximate expressions for wing-
tail combinations are

-2st1afbc%“ Cdwing
——— —
~ ~ az ~V Cklmfi

(81)

and

(82)

The .
%

of the wing has been neglected in equation (82) because it is

usually small.

Two-dimensionalwing-tail combinations.- me equations for C ,
h

%
and . for two-dimensionalwing-tail conibinationscan be expressed

in closed form. ‘I!hesum of the wing and the tail contributions are as
follows (these expressions were obtained by integrations of the pressure
distribution resulting from a constant vertical acceleration over the
wins and tail surfaces): For the case where the tail lies downstream
of the Mach sheet from-the traillng edge’of the wing (see fig. 26(a)),

%=;

For the case where the

-2+.l-(%~+3[+%11
3 2CW

(83)

(84)

Mach sheet from the trailing edge of the wing
intersects the tail surface (see fig. 26(b)),

(85)

.——. .-— —— -——— —__—— -—
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For the case where the tail mirface lies between the
leading edge of the wing and the ~ch sheet from the
the wing (see fig. 26(c)),

,%=+.2!E5)

(85)

Mach sheet from the
trailing edge of

(87)

(88)

A comparisonbetween exact (linearized)values of the C% and

values calculated from equation (81) is presented in figure 53 for two
Mach nuuibers. The poor agreement between exact and appro-te values
shown in figure 53 is to be expected because the upwash behind the
two-dimensional airfoil can not be approximated by a simple time-lag
effect.

Figure ~ presents a cmnparisonbetween exact (linearized)values
of the ~ and values calculated fram equation (82) for two Mach num-

UJ

hers. !l?hisfigure indicates that equation (82) can not be used for two-
dimensional wing-tail combinations. The poor agreement between exact
and approximate values shown in figure X is to be expected because the
upwash behind the wing does not exhibit a time-lag effect.

.,
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A triangular wing-tail combination.- ‘l?heC
%

and C
%

of a

triangular wing-tail combination are considered for the same conf~gura-
tion with the same Mach nwiber range which was considered previously in
the sections on the lift and pitching moment due to angle of attack and
in the sections on the Mft and pitching moment due to pitching.

It is asswed that the spanwise vsriation of the upwash due to a
constant vertical acceleration can be neglected and that the upwash at
the tail location can be determined from the values of the upwash along
the center line of the wake. Under these assumptions the upwash at the
tail location due to a constant vertical acceleration at t = to can be

found from figure 5.

The variation of C
%md%i

wfti Z/~ for three ~ch numbers

is presented in figures 55 and 56, respectively.

A comparison between exact (neglecting spanwise variations in
upwash) values of c% and approximate values calculated from equa-

tion (81) (fig. 57) shows god agreement letween the exact and approxi-
mate values.

A s~ comparison between exact (neglecting spanwise variations
in upwash) values of ~ and approximate values calculated from equa-

tion (82) (fig. 58) also--showsgood agreement between the exact and the.
approximate values.

Figure 59 presents the variation of ~ for three different center-

of-gravi@ locations for Mach number 1.M. This figure indicates that
the center-of-gravity location has a large effect on %“

Exact (neglecting spanwise variations in upwash) values of ~
—

and values calculated from equation (82) for two different center-of-
gravity locations at llachnumber 1.44 are compared in figure 60. ‘I!he
a~eement between exact and approxtite values is much poorer in these
cases than for the cases shown in figure 58. ~s result indicates that
equation (82) should not be used for cases where the center of gravi~
is not located near the centroid of the wing area.

Rectanguliar-wing-triangular-tail coribinations.-The C .~and~

of a number of rectangular-wing-triamguls,r-tailcombinations are con-
sidered. These wing-tail configurations are illustrated in figure 31
where the defining parameters are also presented. ~se are the same
configurations that were considered ‘previouslyin the sections on the
lift and moment due to angle of attack and in the sections on the lift
and moment due to pitching.
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The variation of C
% ‘d @ ~th Z/~ fOrseveral Machnum.

hers is presented in figures 61 and 62, respectively.

Figure 63 presents a comparison between exact values of
c% ‘d

values calculated frcm equation (81) for two different wing-tail combi-
nations. Figure 63(a) shows good agreement between exact and approxi-
mate values for awing with an aspect ratio of lwhereas figure 63(b)
shows poor agreement between the exact and approximate values for a wing
with an aspect ratio of 4. ~s poor agreement is to be expected because
the upwashbehhd the wing with an aspect ratio of 4 (fig. 63(b)) exhibits
some of the two-dhensional characteristics.

A comparison between exact values of . and the values calculated
k

from equation (82) for two different wing-tail coribinationsis presented
in figure 64. FYgure @(a) (aspect-ratio-lwing) shows fairly good
~eement between exact and approximate values, and figure ~(b) (aspect-
ratio-h wing) shows poor agreement which is caused by the two-dimensional
character of the upwash behind the wing.

The variation of .
%

with Z/~ for three center-of-gravi~ loca-

tions for two configurations is given in figure 65. TILLSfigure indicates -
that the center-of-gravi~ location has a strong effect on ~..

a

Figure 66 presents a comparison between exact values of . and
%

approximate values calculated from equation (82). Figure 66(a) indi-
cates that equation (82) should not be used for cases where the center
of gravity is not located nesr the centroid of the wing area for a wing
of low aspect ratio whereas figure 66(b) indicates that e@tion (82)
should not be used at all for wings of high aspect ratio.

The ~+~ for a Number of Wing-Tail Ccmibtitions

The expression ~+~ partly determines the damping of longi-

tudinal oscillations of aircraft. For this reason, ~+~ is given

sepsrate consideration in this section.

Figure 67 presents ~+& for a series of two-dimensionalwing-

tail combinations in which the center of gravi@ is located at the mid-
chord point of the wing, Z/~ is equal to 2.25, the ratio ct-~ iS

~, and the height of the tail surface above the wing has various
2
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values. The discontinuities in slope of the curves in figure 67 corre-
spond to points where the type of flow over the tail surface changes
(see fig. 26). Ilgure 67 indicates that, when tie tail lies between
the I@ch sheets from the leading and trailing edges of the wing (see
fig. 26(c)), ~+~ is decreased considerably from the values for

the same combination where the wing and the tail lie in the same phe.

The variation of ~+& tith Z/~ is presented in figure 68

for two Mach numbers for a two-dimensional wing-tail combination in
which the center of gravi@ is located at the midchord point of the wing,

the ratio ct~~ is ~, and z/cw is ~. This figure indicates that

~q + ~ is decreased by increasing Z/cw.

Figure 69 presents the variation of ~+~ with Wch nunber

for a two-dimensionalwing-tail cotiination in which the center of
gravi~ is located at the midchord point of the wing, the ratio z/~

has various values, the ratio

of the wing.

The relation between Mach
which causes ~+~ tobe

%/’% ‘s :Y-t@ ‘au ‘es ~t~ p-

number and center-of-gravi@ location
zero for five two-dimensionalwing-tail

combinations is shown in figure 70.

Figure 71 presents the variation of ~+~ with Z/~ for

three Mach nuuibersfor the same triangular wing-tail combination as was
considered previously. Figure 72 presents the variation of ~+c%

with Z/~ for various Iiachnumbers for the same rectangular-wing=

triangular-tail combinations as were considered previously. These fig-
ures indicate that ~+& increases rapidly with Z/~.

CONCLUDING REMARKS

The force and moment coefficients of an aircraft undergoing unsteady
longitudinal motions at supersonic speeds can be expressed in terms of an
infinite series of stability derivatives of successively higher orders.
This representation of the aerodynamic forces and moments is felt to be
useful in accounting for the unsteady itiluences in stability studies.
Ih this paper attention is primarily devoted to the establishment of the
more comnon stability derivatives. The stability derivatives resulting
from unsteady motions that appear to be’the most important are those
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associated with constant vertical acceleration. ‘I!hecalculation of the
upwash by the linearized theory behind wings with constant vertical accel-
erations can be reduced to solving a number of steady-flow problems. .

One of these steady-flow problems is the determination of the upwash
behind a wing at a constant angle of attack and another of these steady-
flow problems is the determination of the flow behind a wing induced by
a constant rate of pitch. The effects of the rolding up of the wake and
other distortions are neglected and it is assumed that the wake remains
in the plane of the wing.

For some plan forms the upwash at points which are not located near
the ~ch sheet from the traili@ edge of the wing resulting from a con-
stant vertical acceleration can be approximated very well by using the
upwash due to a constant angle of attack and a time-lag effect. !lhis
approximation breaks down for the two-dhensional airfoil and yields
poor results for high-aspect-ratio rectangular wings. me few calcu-
lated examples seem to indicate that in general a simple time-bg effect
yields god approximations to the upwash due to a constant vertical
acceleration behind unswept wings of low aspect ratio and yields a poor
appro~tion to the upwash behind unswept wings of high aspect ratio.
The effects of sweep were not tivestigated in any of the examples which
were calctited.

For the wing-tail combinations investigated, the results indicate
that the moment coefficient result~ froma ste~pitc~ ~q cube .

appro-ted to a fairly high degree of accuracy by a simple expression.
This approximation essentially involves accounting for the lift arising
as a result of the geometric angle of attack at the tail.associated with
the pitching motion.

‘I!heresults also indicate that the simple time-lag effect, which is
sometimes used to calculate the moment resulting from a constant vertical
acceleration ~ foraircraft atsubsonic speeds, isnot reliable at

supersonic speeds. AmOre reliable method of calculating ~. wouldbe
a

to determine the upwash produced bya wing with a constant vertical.
acceleration. This can be accomplished by the methcds developed herein
or by calculating the components of the upwash by the use of lifting
lines. The contribution of the horizontal tail to

% wo~d men be
found by the use of exact or approximate relations for–the tail contri-
bution to ~ @ven herein.

!Cheresults for two-dimensionalwing-tail combinations seem to
indicate that the dampi@ of longitudinal oscillations due to

$%+% .
is increased considerably if the tail surface lies between the Ma& sheet

.
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from the leading edge of the wing and the Mach sheet from the trailing
edge of the wing. Calculated values of Cmq + ~ indicate that the

damping contributedby this factor increase~ rapidly as the distance
from the wing to the tail is increased.

Langley Aeronauticd”Iaboratory,
National Advisory Cmmittee for Aeronautics,

Langley Field, Va., December 11, 1953.

_——. .. . .. .. ——— ———-———— --- — -.— ——. -
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me function f32 is

APPENDIX A

D~ION OF 62

given by equation (22) or equation (24). The

expression for 92 as given by equation (22) is

z J x Aur
d-q WIG W@ (Y2 + Z2)R

By applying @e rule for the differentiation of
respect to a parameter to the first integral on

a02 ~ af32
equation (22), —

h z
can be written as

a definite inte~al with
the right-hand side of

aez(~,yjz) z J% ‘(Y,)E=)2+3’~,+=—
b 211#v

hl (@+ Z2) x - J)2 -B2(Y2+ Z2)

ae2(x,y,d

az

Za

J

X Z!Ur—— dq ayl
2X & W@ (Y2 + Z2)R

- J)2 - B2(Y2 + 22) -

I

Z2(X - J)’

1

1

Wl

\ (x - J)2 - B2(Y2 + Z’)

(Al)

+Za

J

X AUr
—.
2flaz ~1 % -

Wing (@ + Z2)R

(A2)
.
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Equations (Al) and (A2) are valid when the limits of integration, hl

and h2, are either the Mach cone from the point X~Y~Z or the P~-fo~

tips.

Equations (Al) and (A2) become indeteate at the apex of the
af32(x,y,o)

hyperbola as z approaches zero. The value Of P can befouna
&

directly frm e2(x,y,0) since this value is known. The value Of

ae2(x,y,0)
is givenby (frm eq. (17), ref. 15)

az

J

a2~2 ~

be2(x,y,o) ~ aq k
—= -— ml *1 -

az 23C Wing+wake ~

Separat@ the wing and wake integr* yielti

The second integral on the right-hand side of the
be integrated with respect to xl. The result of

tion canbe expressed as

precetig expression can
perfo*g this integra-

. . .———.. —-_— —_— __—_
——- .——..— __——.-
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/’r a2Ae2

(A3)

a2d32
Note that

h~ bl

The expression

xi 2 –ax
. ..

may be written as

for E12 as given

a function of Y1 s~ce xl = J(Y1).

by equation (24) is

The lower l@it of the preceding integrals is a function of y and z.
In the differentiation of the preceding integrals with respect to either
y or z, this variable Wt must be considered.

The trailing edge of the wing maybe divided into-three types. The
first of these is the completely supersonic trailing edge. In this -&pe
of trailing edge, the component of free-stream veloci~ nofil to the
trailing edge is always supersonic. (See fig. ~(a). ) The second type
of trailing edge is the completely s~sonic edge. Here, the component
of free-stream velocity normal to the trailing edge is stisonic. (See
fig. ~(b).) The third we of trailing edge is the mixed supersonic and
subsonic trailing edge. As its name implies, this type of trailing edge.
has both supersonic and stisonic portions. (See figs. 73(c) @ 73(d).)

For supersonic trailing edges the wake has no effect upstream of the
trailing edge; thus, Qp(%Y,’) is zero and equation (24) reduces to

ep(x,y,z) = +
r

%(h~y, z)dh (A4)
BVMS

.

.

.
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lh order to differentiate the integral of equation (A4) @th respect to
y and z it is convenient to express the lower limit ~ of the inte~ “

mathematically. For all but the simplest trailing edges,”the mathematical

difficulties are too great to make this expression practical. A gener~
procedure is set up, however, and a few simple cases are presented. The
eqwtion of the trailing edge has been represented by

and the Mach cone from each point on the trailing edge is given by

(x - J)2 - B%2 - B2Z2 = O (A5)

The Mach sheet from the trailing edge is the envelope of the Mach cones
from all the points along the trailing edge. me equation of the Mach
sheet from the trailing edge can be foundby elhinating yl from the
two eqyations

(X - J)2 - B2(y - y~)2 - B2Z2 = O

[ 1~ (x - J)2 - B2(y - ~)2 - B2Z2 = O
bl

(A6)

(A7)

Such relationships follow from the mathematical procedure”for finding the
envelope of surfaces. (See ref. 23, p. 55.)

When the trailing edge is swept at a constant angle and the trailing-
edge end points do not affect the area of the Mach surface being con-
sidered, the Mach surface is made up of two plane surfaces. For a

coordinate system whose origin is located on the trailing edge, the
equation of the trailing edge is given by

Y1

‘l==t
,,

Thus,

_—.—.=— ....—.——— .——— —. .-.
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Equations (A6) and (A7) become

()
yl 2

B2(y - yl)2 - #Z2 = ()
‘-G -

() Y1 1
x -—— -

~t mt B2(Y ‘Yl) = O

The elimination of yl from the two preceding eqmtions yields

(mtx - y)2 - z2(B~2 - 1) = O

Thus, the equation for the Mach surface is

Il%x -y- 4== = 0

when z is positive and

when z is negative.
stream direction, mt

%X - r===oy+z B?mt

When the trailing edge is perpendicular
cm and equation (A8) becomes

x -Bz=o

(A8)

(A9)

to the

(Ale)

When the trailing edge is made up of a broken line composed of Wo
straight-line se~nts, the Mach surface from the trailing =dge is made
up of parts of the after cones from the trailing-edge end points, parts
of the after cone from the point connecting the two line segments, and
the two Mach sheets fr~ the two straight-line segments of the trailing
edge. (See figs. 74and 75.)

.

.
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h the preceding paragraphs a method has been presented for the
determination of the eqution of the Mach surface from the trailing
edge . Let the equation of the Mach surface

x = G(y,z)

Eqyation (A4) then canbe written as

be represented by

1
e2(x,y,z) s — T ~(h,y,z)dh

B2V G(y,z)
(All)

Differentiating equation (NJ) wtth respect to y and z yields

be2(x,y,22) ~

f

W.0)Y,4 ~A

=—

w -& MI%)* (AM)
B2V G(y,z) &

&.32(x,y,z) ~ r w!T(hY,4 ~A

az ‘= G(y,z) az - & Qw(Ms)W (~3)

where &(MS) is the value of ~(x,y,z) at the trailing-edge Mach sur-

face obtatied by approachh~ the Mch surface from the positive x-direction
along the line (yl = y, Z1 = z). The expression ~(Ms) can be evaluated

by calculating ~ on the line (yl =y, Z1 = z) a small distance e

downstream of the trailing-edgeMach ’sheetand then taking the lhit as
e approaches zero. For points behind the Mach surface from any straight-
line segment of a trailing edge, the quanti~ ~(Ms) is givenby

(. )y+
Qw qY,@ for positive z, provided the Mach shrface at the point

bekg considered is not part
line se~nt.

For wings with subsonic

edge Mach surface are zero.
yield

of the Mach cone from an end point of the

trailing edges, ~ and ~ at the trailing-

Equation (24) then can be differentiated to

—..—.—-.—— —.. —z ... — .— —— ..
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and

ae2(x,y,z) _ 1 ~x%AY,4 ~A++~xmJ:,YAd,.

For whgs with
~ and ~ maybe

supersonic portions

mixed supersonic and subsonic trailing
discontinuous th,roughthe Mach surface

of the trailing edge. Expressions for

(A15)

edges, both
from the

ae2 ~d ae2_ _

for wings with tied, trailing edges can be found in a mnner shilar to
those used in treating wings with other @es of trailing edges. The
result~ .eeressions appear to be of little value since they require a
knowledge of the induced potential on the plan form and for this reason
they are not presented here.

.

.
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APPENDIX B

The upwash along the center line of the wake of a pitching triangu-
lar wing with sfisonic leading edges can be found by using a numiberof
methods. The method used here is the potential dotilet method presented
in reference U.” This method W6S chosen because certain integrals which
arise from using this method have already been evaluated in reference 11.

The potential difference across the surface of a triangular wing
pitching about its apex is (from ref. 24)

m (Bl)Aeq(xl,Yl)’= 2%X1 m%l

where the coordinate sxes

The potential at any
expressed as (ref. Il.)

are located at the wing apex. (See fig. 76.)

point in the vertical plane of symmetry canbe

f

J
eq(x,o,z) = -B2z~

wing

frr
B2ZC%Jj

‘r (x - X+ - 1

3/2
B2(y2 + 22)

‘@== d-q @l -

[
(x - X1)2 - 1

3/2
B2(y12 + Z2)

m dxl ayl (B2)

,

——. . .—— -— — -
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Equation (B2) can also be expressed as

NACA TN 5072

.

f

f3q(x,0,z) = B2Z~

[[ [

(x - X1)- ~1 ~, -

( J

3/2
W- (x - xl)2 - B2 y~2 + 22

JTJ32--lf F== ~1 @l -

[ 13/2
wing ~- 2-

( xl) B2(Y12 + z2

f

J

-
B2zc~ dxl WI (B3)

[
‘-e (x - XI-)2- J

3/2
B2(Y12 + Z2

llheupwash along the center line of the wake is

‘q
W(x,o,o) = Mm —

z-o az

[
((x+-)2 -B2Y12+

.
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The first integral of eqyation (~) can be evaluated to yield

63

for c~x~ (Bm+l)c, and

equation (B4) arise in
of symmetry from a tri-

for (l%n+ l)c ~ x. The last two integrals in
evaluating the potential in the vertical plane
angular wing. These two integrals were evaluated in reference Il. From
reference il.,the values of these expressions are found to be given by

for cSx S(Bm+. l)c,

for (Bm + l)c 5 x,

for c~x~(Bm+l)c, and

//

;50 “c%:f ‘1==’
dx~ @~ = -2K@ (k3)

I
Wake (x - ‘~’ -

1

3/2
B’(y12 + ‘2

(B1O)

for (M + l)c 5 x.

-—. . .. ————— --- .——
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The upwash along the wake center line is (from eqs. (Bk) to (B1O))

aeq(x,o,o) =

{

1 %@%) - E(%.

az ‘q =J (M+kJ’ ‘1 -

for cSx~(Bm+l)c,~d

)‘(1-%2)K(’kk)(2-:)+$+ ~ (B12)

.

for (Pm + l)c 5 x.
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APPENDIX c

65

aez
THE HASH C~- ALONG THE CENTER LINE OF

dz

THE WAKE OF A’I!RIANGULARWING

af32
The upwash component —

az
can be determined by the methods pre-

viously presented. For this case, hoyever, the upwash can be determined
relatively easily by the use of potential doublets and therefore this
method is used.

The difference h the
is given by

A

x-derivative of the potential across the wake

% 4=7
z= B2E ‘(Bin)

The potential difference across the wdse is

(cl)

(C2)

a02
The upwash component —

az
along the center line of the wake is

given by

(C3)

-—. . .—— —. -.—c—.—— _._ —__ —..-— —-. ——-———— .—
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If the indicated operations in equation (C3) are performed, the following
equations result:

a82
‘= - ~:m,p(’3) - & - ‘32)”(’Jaz

for cSx S(Bm+l)c, and

(C5)

for (Bm+l)csx.

.
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APPENDIX D

EXPRESSIONS FOR THE MOMENT ON CERTAIN HORIZONTNAAIL SURFACES

H the type of arguments utilized in references 22 and 25 are fol-
lowed, expressions may be found for the lift and moment (about the trailing
edge) on surfaces which have supersonic leading edges and trailing edges
which are perpendicular to the free-stream direction (see fig. 77(a)) for
the case of an angle-of-attack distribution which varies linearly with
time.

Consider a
has an angle of

two-dimensional airfoil (as shown in fig. 78(a)) which
attack given by

(s= -&(t - ~)h(x) (Dl)

By symmet~ it is clear that the lift and moment coefficients based on the
area with the variable angle of attack for the wings shown in figures 78(a),
78(b), and 78(c) are the same. The wing shown in figure 78(d) canbe
obtained as a simple cotiination of the wings shown in figures 78(a),
78(b), ~d 78(c). The lift and moment coefficients based on the area
with the variable angle of attack therefore are the same as the lift and
moment coefficients for the two-dimensional v@.

The potential function for the flow over the upper surface of the
two-dimensionalwing illustrated in figure 78(a) is (from eq. (13))

(D2)

where x is the distance downstream from the leading edge of the airfoil.

The pressure-difference coefficient is

(D3)

..———. —.—
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The lift and moment coefficients are, for t = to,

Lift/Unit length . 46
CL = .— rc~rxh(E)dE (D4)

NAC!ATN S072

g v%

~= Moment@nit length

;@

where the moment is taken about

46=—
J 1

c (C -X)dX ‘h(~)d~ (D5)
B3@2V O 0

the trailing edge of the airfoil.

The lift producedby a deflected strip such as is illustrated in
figure ~(b) is the same as that producedby the strip illustrated in
figure 78(d) and hence the same as a strip of the same width on the two-
dimensional airfoil illustrated in figure 78(a). The total lift and
moment coefficients for the type of airfoil illustrated in figure ~(a)
therefore are

43cL=-—
J@sv Airfoil surface ~E.h(@]ds

(D6)

(D7)
46

cm=—

B3~
JJAirfoil surface [L:.?(,)jds

where A is the distance upstream to the element of area ds. (See
fig. 7’7(b).)

In the case where the airfoil illustrated-in figure 7’7(a)is a tail
surface and the wing-tail combination has a constant vertical accelera-
tion, the time-dependent angle-of-attack distribution on the tail surface
is given by

“=’k+%)t
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In this case equtions (I%) and (D7) become

B3StV JJTail ~wface
L —

ds

—

—-——— ——...——— -———-——— . ——
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Figure 12.- The variation of the upwash in the plane of the wing behind
a semi-infinite rectangular wing pitching about its leading edge
(from ref. 15).
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(a) M = 1.20.

Figure 20.- The upwash distribution at t = to in the plane of the wing

behind a rectangular wing with a constant vertical acceleration with
A = 4 for various Mach numbers.
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(a) Body axes used in determining aerodyimnic coefficients.
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Figure 77.- Airfoils with supersonic leading edges and traiMng edges
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(a) Arbitrary angle-of-attack distribtiion.

(b) Arbitrsry angle-of-attack distribution confiued to left side of airfoil..

(c) Arbitrary angle-of-attack distribution confined to right side of airfoil.
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(d) Arbitrary angle-of-attack distribution confined to a strip.

Figure 78.-Mtiite-aspect-ratio airfoils with arbitrary @e-of-attack
distributions varying linearly with time.
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